Unusual World Offers Astronomers A Glimpse Into How Planets Become ‘Hot Jupiters'
Headlines:
Astronomers have detected an exoplanet with a highly oblong orbit that experiences wild temperature swings — and it may be transitioning into another type of world.
The exoplanet, named TIC 241249530 b, orbits a star about 1,100 light-years from Earth. The star is one of a binary pair, so the planet orbits the primary star, while the primary star orbits a secondary star.
Interactions between the two stars, which have a misaligned orbit, could be responsible for putting this planet on the path to becoming a "hot Jupiter," researchers reported in a study published Wednesday in the journal Nature .
Astronomers have found more than 5,600 confirmed exoplanets, and 300 to 500 of them are "hot Jupiters." These planets are massive Jupiter-like gaseous bodies that closely orbit their host stars, which heats them to scorching temperatures.
While Jupiter takes 4,000 Earth days to complete one orbit around the sun, hot Jupiters complete one orbit every few days.
Scientists believe the large planets begin by orbiting their stars from a distance but migrate nearer over time. But they have long questioned how the massive worlds end up in such tight orbits, which are far closer to their stars than Mercury is to our sun.
The observations of TIC 241249530 b, first captured by NASA's planet-hunting TESS satellite in January 2020, offer rare, revelatory insights into what may be a planet on the path to becoming a hot Jupiter.
"Astronomers have been searching for exoplanets that are likely precursors to hot Jupiters, or that are intermediate products of the migration process, for more than two decades, so I was very surprised — and excited — to find one," said lead study author Arvind Gupta, NOIRLab postdoctoral researcher who discovered the planet as a doctoral student at Penn State, in a statement.
On January 12, 2020, the Transiting Exoplanet Survey Satellite collected data suggesting that something was passing in front of the host star TIC 241249530. TESS monitors the brightness of nearby stars to search for dips in starlight that may indicate the presence of exoplanets.
Comments
Post a Comment